Cholecystokinin B-type receptors mediate a G-protein-dependent depolarizing action of sulphated cholecystokinin ocatapeptide (CCK-8s) on rodent neonatal spinal ventral horn neurons.
نویسندگان
چکیده
Reports of cholecystokinin (CCK) binding and expression of CCK receptors in neonatal rodent spinal cord suggest that CCK may influence neuronal excitability. In patch-clamp recordings from 19/21 ventral horn motoneurons in neonatal (PN 5-12 days) rat spinal cord slices, we noted a slowly rising and prolonged membrane depolarization induced by bath-applied sulfated CCK octapeptide (CCK-8s; 1 microM), blockable by the CCK B receptor antagonist L-365,260 (1 microM). Responses to nonsulfated CCK-8 or CCK-4 were significantly weaker. Under voltage clamp (V H -65 mV), 22/24 motoneurons displayed a CCK-8s-induced tetrodotoxin-resistant inward current [peak: -136 +/- 28 pA] with a similar time course, mediated via reduction in a potassium conductance. In 29/31 unidentified neurons, CCK-8s induced a significantly smaller inward current (peak: -42.8 +/- 5.6 pA), and I-V plots revealed either membrane conductance decrease with net inward current reversal at 101.3 +/- 4.4 mV (n = 16), membrane conductance increase with net current reversing at 36.1 +/- 3.8 mV (n = 4), or parallel shift (n = 9). Intracellular GTP-gamma-S significantly prolonged the effect of CCK-8s (n = 6), whereas GDP-beta-S significantly reduced the CCK-8s response (n = 6). Peak inward currents were significantly reduced after 5-min perfusion with N-ethylmaleimide. In isolated neonatal mouse spinal cord preparations, CCK-8s (30-300 nM) increased the amplitude and discharge of spontaneous depolarizations recorded from lumbosacral ventral roots. These observations imply functional postsynaptic G-protein-coupled CCK B receptors are prevalent in neonatal rodent spinal cord.
منابع مشابه
a G protein - dependent depolarizing action of sulphated cholecystokinin ocatapeptide ( CCK - 8 s ) on rodent neonatal spinal ventral horn neurons
Reports of cholecystokinin (CCK) binding and expression of CCK receptors in neonatal rodent spinal cord suggest that CCK may influence neuronal excitability. In patch-clamp recordings from 19/21 ventral horn motoneurons in neonatal (PN 5-12 days) rat spinal cord slices, we noted a slowly rising and prolonged membrane depolarization induced by bath applied sulfated CCK octapeptide (CCK-8s; 1 μM)...
متن کاملCholecystokinin octapeptide increases spontaneous glutamatergic synaptic transmission to neurons of the nucleus tractus solitarius centralis.
Cholecystokinin (CCK) is released from enteroendocrine cells after ingestion of nutrients and induces multiple effects along the gastrointestinal tract, including gastric relaxation and short-term satiety. We used whole cell patch-clamp and immunohistochemical techniques in rat brain stem slices to characterize the effects of CCK. In 45% of the neurons of nucleus tractus solitarius subnucleus c...
متن کاملCholecystokinin-8s excites identified rat pancreatic-projecting vagal motoneurons.
It is known that cholecystokinin (CCK) acts in a paracrine fashion to increase pancreatic exocrine secretion via vagal circuits. Recent evidence, however, suggests that CCK-8s actions are not restricted to afferent vagal fibers, but also affect brain stem structures directly. Within the brain stem, preganglionic neurons of the dorsal motor nucleus of the vagus (DMV) send efferent fibers to subd...
متن کاملAcute application of cholecystokinin and its effect on long-term potentiation induction at CA1 area of hippocampal formation in rat
Introduction: It has been demonstrated that cholecystokinin sulfated octapeptide (CCK-8s) can affect synaptic transmission in the hippocampus. Because one of the major experimental models to understand the events happening in synaptic plasticity is To Study the long-term potentiation (LTP), we decided to investigate the effect of concomitant administration of CCK-8s and tetanic stimulation of S...
متن کاملEffects of long-term haloperidol treatment on the responsiveness of accumbens neurons to cholecystokinin and dopamine: electrophysiological and radioligand binding studies in the rat.
Cholecystokinin (CCK) and dopamine (DA) coexist in a subpopulation of neurons of the ventral tegmental area projecting to the nucleus accumbens. The present experiments were undertaken to determine the effect of acute and long-term administration of haloperidol on the responsiveness of accumbens neurons to microiontophoretic applications of the sulfated cholecystokinin octapeptide (CCK-8S), kai...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 98 3 شماره
صفحات -
تاریخ انتشار 2007